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Universidad del Páıs Vasco, Avenida Felipe IV, s/n 20011 San Sebastián, Spain
‡ Departamento de Fı́sica de Materiales, Facultad de Quı́mica, Universidad del Ṕáıs Vasco,
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Abstract. Simple model band calculations show that torsional stress reduces the absolute value
of the Joule magnetostrictionλ. This is the consequence of the quenching of orbital magnetism
by torsion. The calculations provide an explanation of recent experimental data on almost
zero-magnetostrictive amorphous Co-based wire.

1. Introduction

The magnetostriction of metallic wires is of interest from both a technological [1] and a
theoretical point of view. In principle, the values of macroscopic magnetoelastic coefficients
can be found by means ofab-initio band-structure calculations [2]. However, the accuracy
of these methods is still too low to expect quantitative results on Joule magnetostriction,
and phenomenological approaches are of common use [3, 4] to interpret experimental data.

Recently, the influence of the torsional strain on magnetostrictionλ was investigated
[5] for (Co95Fe5)72.5Si12.5B15 amorphous wire. This composition is called ‘zero
magnetostrictive’ because its magnetostriction is very small. After thermal annealing, the
magnetostriction becomes positive. The tensile stress derivative of magnetostriction, defined
phenomenologically asA = dλ/dσ , is known [6, 7] to be negative in most experiments.
This is true also for annealed wire. Therefore we expect thatλ will change with torsional
strain towards more negative values. Instead, we have found [5] a systematic reduction in
the absolute value ofλ with torsion. In particular, for an as-quenched sample we obtain
an increase inλ (which is negative in this case). Also, the absolute value of the constant
A is found [5] to be reduced with increasing torsion. The main idea of this paper is
that this behaviour could be due to quenching of the Joule magnetostrictionλ by torsional
deformation of the crystal-field potential.

The magnetic anisotropy of crystals is usually calculated by integrating the contributions
from particular electronic states over the Brillouin zone (BZ); there, a small part of the zone
near the high-symmetry axis and the Fermi level is known to give the major contribution to
the energy of magnetic anisotropy [8]. Then, the theoretical description of the effect can be
limited to this small part of the BZ [9]. In amorphous materials, we have no BZ but we still
have the density of electronic states. Some of these states certainly have a non-zero orbital
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magnetic moment, because amorphous materials are magnetostrictive as also are crystalline
materials. The relation of these states to the amorphous structure remains unclear. Some
explanation of this problem may be due to the long range of the ferromagnetic exchange
interaction, which averages out local magnetic anisotropy within large clusters of atoms
[10]. This problem is not within the scope of our paper, and our model description is to be
taken as phenomenological. In principle, the model is the same as applied before [11] to
the calculation of the constantA for a similar amorphous alloy composition.

The organization of the paper is as follows. First, we briefly report the data which are
to be explained. In subsequent sections, our model calculations are described and the results
are discussed in the context of experimental data. Final conclusions close the paper.

2. Experimental data

Amorphous(Co95Fe5)72.5Si12.5B15 wire of diameter 0.12 mm was cut into pieces, of 10 cm
length. The magnetostrictionλ and its strain derivativeA were measured [5] by means
of the small-angle magnetization rotation method. In this method, the measured signal is
known [12] to be proportional to the actual values of saturation magnetizationMs . For
zero torsion, the value ofλ was found to be about−4 × 10−8 for an as-quenched sample,
and+1 × 10−7 for annealed wire. The results are given in figures 1 and 2. The observed
asymmetry with respect to torsion should be assigned to a torsional stress, which is quenched
in the amorphous structure [13]. This asymmetry vanished after annealing, as can be seen
in figure 2. The observed values of the coefficientA were found [5] to be not influenced
by annealing. At zero torsion,A was equal to−1.6× 10−10 MPa−1 and varied smoothly to
−1.0×10−10 MPa−1, when the torsionξ was 20π rad m−1. As we can see in figures 1 and
2, the absolute value of magnetostrictionλ is reduced with torsion both for as-quenched
(λ < 0) and for annealed (λ > 0) wire.

This behaviour is unexpected for the following reason: almost everywhere in the volume
of a wire, torsional stress can be seen as a tensile stress along an axis forming an angle
π/4 with the axis of a wire [14]. As long as the amorphous structure can be seen as
isotropic, its magnetoelastic behaviour is governed by the linear magnetoelastic constant
λ. We have found that the tensile stress derivative ofλ is negative; despite that,λ
increases with increasing torsional stress for the as-quenched sample. So, there is a basic
difference between the influence of tensile and torsional stresses on magnetostrictionλ, and
our intention is to determine this difference.

In principle, the magnetization dependence on torsion (the inverse Wiedemann effect
(IWE)) could be responsible, at least partially, for the above difference. We have made
an attempt to separate out this effect. This is done on the assumption that the observed
[5] torsion dependence of the constantA, namely A(ξ), can be assigned to the IWE.
Then we can use this dependence to determine the curveMs(ξ) and to substitute it into the
experimental data onλ(ξ). In this way we get from the experimental data the ‘renormalized’
magnetostrictionλren, which depends on the torsion but not through the IWE. The results
on λren are given in figures 1 and 2. These results should be compared to the values ofλcal

given by the expression

λcal(ξ) = λ(0) + A〈σ(ξ)〉 (1)

where〈σ(ξ)〉 = 〈ξr〉 is the torsional strain averaged over the wire volume. For simplicity,
we adoptA = A(ξ = 0); this does not influence the conclusion thatλren(ξ) cannot
be fitted byλcal(ξ) for as-quenched wire. Then, the observed torsional dependence of
magnetostriction cannot be explained by means of the IWE, and another interpretation of
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Figure 1. Experimental dependence of the magnetostrictionλ for as-quenched (Co,Fe)–Si–B
amorphous wire [5], the torsional dependences of renormalized magnetostriction and the curve
λcal (equation (1)).

the experimental data is needed. In the next section we argue that the solution is provided
by the idea of quenching the orbital magnetism by the torsional stress.

3. Model calculations

The starting point is the Stoner-like model band [11]. The Hamiltonian includes the spin–
orbit interaction, the Zeeman spin, the orbital terms and the coupling of orbital energy to
the crystal field:

H = GL · σ − 2µB1 · (σ + αL) + Hε (2)

whereG is the one-electron spin–orbit constant,L andσ are orbital and spin operators,µB

is the Bohr magneton and1 is an effective magnetic field which is equivalent to the Stoner
gap. The magnetoelastic Hamiltonian is diagonal in spin index; its matrix representation in
the t2g basis is

Hε =
[ −bε 0 0

0 −bε brξ

0 brξ 2bε

]
(3)

whereb is a microscopic magnetoelastic coefficient. Here, both tensileε and torsionalξ
strains are taken into account. The t2g basis is the minimal basis which captures the three-
dimensional space; the eg bands are omitted for simplicity. We would like to add that our
model description is limited to a small fraction of electronic states, where the orbital moment
is different from zero; this approach, although phenomenological, was found [9, 11] to be
useful. The effective density of states is shown in figure 3. The calculations are limited to
the case of a strong ferromagnet (large Stoner gap), i.e. we neglect the spin–orbit matrix
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Figure 2. Experimental dependence of the magnetostrictionλ for annealed (Co,Fe)–Si–B
amorphous wire [5], the torsional dependences of renormalized magnetostriction and the curve
λcal (equation (1)).

elements which are non-diagonal in spin variable. These matrix elements, if taken into
account as a perturbation, produce corrections to the eigenvalues which are proportional to
1/1, where1 is the Stoner gap. The torsion energy is taken into account as a perturbation
within the second-order perturbation calculation. We get the eigenvalues

E1 = −1 − bε + |G/2 − α1| + (brξ)2

|G − 2α1| − 6bε
(4)

E2 = −1 − bε − |G/2 − α1| + (brξ)2

−|G − 2α1| − 6bε
(5)

E3 = −1 + 2bε + (brξ)2

6bε − |G − 2α1| + (brξ)2

6bε + |G − 2α1| (6)

whereα1 is the orbital polarization [15],ξ is the torsion andr is the distance between a
given point of the wire and the wire axis. The remaining three energy levels can be obtained
from the relation

Ei(1) = Ei−3(−1) i = 4, 5, 6. (7)

The magnetic anisotropy energyU is written in the form

U =
6∑

i=1

∫ µ

−∞
eρ(e − Ei) de (8)
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wheree is an energy variable,µ is the chemical potential andρ is a model function of the
density of electronic states:

ρ(e) =
6∑

i=1

d

6π

1

(e − Ei)2 + d2
(9)

whered is the half-bandwidth.

Figure 3. Density of states according to equation (9).

The magnetostrictionλ is calculated within the rigid-band model [9] as

λ = −1

c

6∑
i=1

ni

∂Ei

∂ε
(10)

whereni is the number of electrons in theith state andc is an appropriate elastic constant.
Let us disregard for a moment the torsion dependence ofni , which is justified for wide
bands, and let us consider the case of a strong ferromagnet with less than half the band
filled, wheren4 = n5 = n6 = 0. The tension stress derivatives are performed atε = 0.
Then, for a given pointr of a wire, we get

λ(r, ξ) = b(2n3 − n1 − n2)

{
1 − 6

[
brξ

G − 2α1

]2
}

= λ(ξ = 0)

{
1 − 6

[
brξ

G − 2α1

]2
}

(11)

whereλ(ξ = 0) does not depend onr. Averaging over the volume of a wire, we get

λ(ξ) = λ(0)

{
1 − 3

[
bRξ

G − 2α1

]2
}

(12)

whereR is the wire radius. As we can see from equation (12), the absolute value ofλ is
reduced by the torsionξ , exactly as in the experiments, for both the as-quenched sample
and the annealed sample.

This result motivates us to perform numerical calculations for six subbands, where the
torsion dependence of the numbers of electrons is taken into account. The values of the
parameters and the model density of states for this calculation are taken from [11], except
for the Stoner gap and the band filling. These values are given in table 1. We would like
to note, however, that the model band structure is not exactly the same as in [11] even
for zero torsion, because our present assumption on strong ferromagnetism has not been
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made in that work. This approximation is too rough to calculate the stress derivativeA

of magnetostriction, because the expression forA [11] contains the second derivative of
energy levels with respect to the strain;

−c2A =
∑

i

ni

∂2Ei

∂ε2
− ρi(µ)

(
∂Ei

∂ε

)2

+
( ∑

j

ρj (µ)
∂Ej

∂ε

)2/∑
k

ρk(µ) (13)

and here this second derivative is zero for zero torsion (equations (4)–(6)). For wide bands,
ρ is small and other contributions toA in equation (13) are negligible. Still we believe
that the torsion dependence of magnetostriction can be discussed even within the above
simplified picture. Band calculations are performed with the condition that the Stoner
gap is not changed with torsion. The results are given in figure 4 and compared to the
renormalized values of magnetostrictionλ. In this way we exclude the torsion dependence
of magnetization also from experimental data.

Figure 4. Renormalized magnetostriction for the as-quenched amorphous state compared with
the results of model band calculations (a.u., arbitrary units).

4. Discussion

The analytical solution forλ(ξ) given by equation (12) is a purely parabolic curve, which
always leads to a reduction in the absolute value of the magnetostriction with increasing
torsion. This shape is only slightly changed in the numerical solution (figure 4), where the
torsion dependence is less smooth than a parabola. In both cases, we have to admit that the
torsional strain energy is comparable to the difference between the energies of electronic
states for the same orientation of spin. If the torsional strain energy is too large on this scale,
our perturbational approach is not valid. If it is too small, we get the model prediction that
magnetostriction does not depend on torsion. This seems to be the case for the annealed
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sample (figure 2). This lack of dependence could be obtained very easily for the values of
the Stoner gap different from that in table 1. That is why we do not perform any comparison
to experimental data for the case of the annealed wire (figure 2).

Table 1. Values of parameters for numerical fitting the experimental data on the torsional
dependence of magnetostriction in(Co95Fe5)72.5Si12.5B15 amorphous wire.

Spin–orbit couplingG (meV/atom) 30
Half-bandwidth of Lorentzian density of states (meV/atom) 100
Microscopic magnetoelastic constantb (meV/atom) 74
Stoner gap1 (meV/atom) 299.5
Band filling (electrons/atom) 0.2
Orbital polarization coefficientα (dimensionless) 0.05

The direct result of both analytical and numerical calculations is that the variation inλ

with torsion is visible only within a small range of magnetizations, but the evaluation of
this range is rather difficult. With the value of the microscopic magnetoelastic parameter
b = 0.074 eV, we find the energy of torsion comparable to 10−4 eV. The above-mentioned
difference between the energy levels is due to the spin–orbit interaction energy and to the
orbital polarization [15]. For the former, we have no direct evaluation. Reference data give
us a value between 0.01 and 0.1 eV [16]. The latter is dependent on the magnetization
and, thus, on the temperature. Moreover, the temperature dependence of the magnetization
is known to be hardly understood within the Stoner model. In fact, we expect that, in
3d metals, local magnetic moments are not much influenced by temperature, and they are
different from zero above the Curie temperature [16]. Therefore, the small value of the
energy gap between orbital states could be more stable with temperature than it appears
from the Stoner model. These arguments allow us to treat our calculation as a qualitative
estimation of the investigated effect. On the other hand, the quenching of orbital magnetism
can be only one of several effects contributing to the data observed experimentally [5].
Another mechanism could be analogous to those which were referred to when discussing
the tensional stress dependence of the magnetostriction: variations in the distribution of
pairs of atoms [17], fluctuations in local magnetostriction [18] or stress dependence of
anisotropies of local clusters [19]. This work is a continuation of our previous attempts
[4, 9, 11] to deduce the macroscopic magnetoelastic behaviour of metallic magnets directly
from microscopic band effects. Until now, we have no direct experimental criterion to
separate the contributions to magnetostriction produced by various mechanisms. That is
why we believe that band effects should be kept in the list of possible contributors to the
energy of magnetoelastic coupling in amorphous magnets.

It is not clear whether the effect of quenching of magnetostriction can be observed for
other compositions, where the value of magnetostriction is far from zero (e.g. Co–Si–B and
Fe–Si–B). The tensile stress dependence of magnetostriction was not observed here, and
it seems that the effect is too small to be detected if the magnetostriction is of the order
of 10−6 or more. However, the matrix elements of the tensile stress energy operator are
different from those of the torsional stress energy, and the value ofλ can, in principle, be
changed even with a relatively small energy of torsion. Such a dependence would be of
great importance for numerous applications. In the case of wires, we could obtain a radial
distribution of magnetostriction just by the application of torsional stress.
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5. Conclusions

The effect of torsional strain on magnetostriction in amorphous zero-magnetostrictive wire
is investigated within a simple Stoner-like band model. We find that the thermal average
of the magnetoelastic coupling energy is reduced by the matrix elements of the torsional
energy operator, which are non-diagonal in the base of eigenstates of the orbital magnetic
moment. Both analytical and numerical calculations are presented; for the latter, a set of
parameters is found where the results agree with recently observed data on as-quenched
Co–Fe–Si–B amorphous wire.
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